Interpretive Summary

Description: Potassium is an intracellular ion that is responsible for maintenance of fluid and electrolyte balance. Potassium is essential for muscle and nerve function.

Decreased Potassium

Common Causes

- Chronic kidney disease (cats)
- Alimentary loss
 - Vomiting especially with obstruction
 - o Diarrhea
 - o Choke (horses)
- Renal loss
 - Diuretics
 - o Post-obstructive or prolonged diuresis
- Decreased intake
 - o Potassium-deficient fluid therapy
 - o Potassium deficient diets
- Potassium translocation from extracellular to intracellular fluids
 - o Insulin and glucose therapy
 - o Bicarbonate infusion
 - o Alkalemia

Uncommon Causes

- Renal tubular acidosis
- Hyperaldosteronism
- Cushing's disease
- Hypokalemic myopathy of Burmese kittens

Related Findings

- Chronic kidney disease (cats)
 - o Increased BUN, creatinine and phosphorus
 - o Decreased urine specific gravity
- Alimentary loss
 - o Evidence of gastrointestinal obstruction on abdominal radiographs or ultrasound
 - o Often also have decreased chloride and increased TCO2
 - Potassium translocation from extracellular to intracellular fluids
 - Increased TCO2

Increased Potassium

Common Causes

- Acute renal failure (anuric or oliguric)
- Urinary obstruction/rupture
- Addison's disease
- Pseudohyperkalemia (factitious) due to translocation of potassium from cells post-collection
 - Delayed serum separation

- o Asian dog breeds (Akita, Shiba Inu, Jindo, Chow Chow, and Shar Pei)
- English Springer Spaniels
- o Leukocytosis (>100,000/μL)
- o Thrombocytosis (>1,000,000/μL)
- o Hemolysis

Uncommon Causes

- Selected gastrointestinal diseases
 - o Whipworms
 - o Salmonellosis
 - o Perforated duodenal ulcer
- Medications
 - Angiotensin-converting enzyme (ACE) inhibitors
 - o Trimethoprim
 - Prostaglandin inhibitors
 - Potassium sparing diuretics (spironolactone)
 - Potassium translocation from intracellular fluid to extracellular fluid
 - o Metabolic acidosis due to increased organic acids (ketones, lactate)
 - Massive tissue necrosis
 - Acute tumor lysis syndrome
 - Aortic thromboembolism
 - Rhabdomyolysis/muscle necrosis
 - Post-seizure
 - Strenuous exercise
 - Post-exercise in hypothyroid dogs (mild increase)
- Administration of potassium rich fluids
- Third space accumulation
 - Repeated drainage of fluid in chylothorax
- Sampling error
 - Collection from IV line where potassium administered
 - Contamination of serum with EDTA

Related Findings

- Acute Renal Failure
 - o Increased BUN, creatinine and phosphorus
 - o Isosthenuria (urine specific gravity 1.008-1.012) with decreased urine production
 - o Positive PCR or serology for Leptospira spp., Lyme or other infectious agents
 - o Urinary casts, pyuria, hematuria, proteinuria, glucosuria, and bacteriuria
 - o Positive urine culture with pyelonephritis
- Urinary obstruction or rupture
 - o Increased BUN and creatinine
 - o Urine sediment can show crystals, blood, white blood cells with obstructive disease or blood with rupture
 - o Uroabdomen
 - Abdominal fluid has higher creatinine concentrations than serum
 - Contrast radiographs for urinary tract rupture and leakage
 - o Abdominal ultrasound for masses, stones, other causes of obstruction in the urinary tract
- Addison's disease
 - o Decreased sodium, chloride, and Na:K ratio
 - o Albumin and cholesterol may be low normal
 - o Lack of a stress leukogram (normal or increased lymphocytes and/or eosinophils)
 - o Failure to stimulate on an ACTH stimulation test

Additional Information

Physiology

- Major intracellular cation
- Serum concentration does not accurately reflect total body concentration, but is nearly equivalent to the amount of potassium in the extracellular fluid compartment.
- Serum concentrations change with acidoses and alkaloses.
- Responsible for maintenance of intracellular volume and determining cellular membrane potential

References

- Latimer KS, Mahaffey EA, Prasse KW, eds. Duncan and Prasse's Veterinary Laboratory Medicine: Clinical Pathology, 4th ed. Ames, IA: Blackwell; 2003.
- Stockham SL, Scott MA. Fundamentals of Veterinary Clinical Pathology, 2nd ed. Ames, IA: Blackwell; 2008.
- Willard MD, Tvedten H, eds. Small Animal Clinical Diagnosis by Laboratory Methods, 4th ed. St. Louis: MO; 2004.

Last updated 11/1/2013

